We actually don't use Rust async in the embedded parts of our system. This is largely because our firmware is based on a multi-tasking microkernel operating system, Hubris[1], and we can express concurrency at the level of the OS scheduler. Although our service processors are single-core systems, we can still rely on the OS to schedule multiple threads of execution.
Rust async is, however, very useful in single-core embedded systems that don't have an operating system with preemptive multitasking, where one thread of execution is all you ever get. It's nice to have a way to express that you might be doing multiple things concurrently in an event-driven way without having to have an OS to manage preemptive multitasking.
Heh, this is super interesting to hear. Single threaded async/concurrent code is so fun and interesting to see. I’ve ran some tokio programs in single threaded mode just to see it in action
Rust async is, however, very useful in single-core embedded systems that don't have an operating system with preemptive multitasking, where one thread of execution is all you ever get. It's nice to have a way to express that you might be doing multiple things concurrently in an event-driven way without having to have an OS to manage preemptive multitasking.
[1] https://hubris.oxide.computer/